If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+7x-3=0.
a = 6; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·6·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*6}=\frac{-18}{12} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*6}=\frac{4}{12} =1/3 $
| 2x+1/3x+4=2x/3x-5 | | 6/7x=7 | | 8x+56=216 | | f/6=-4 | | 1+2v=5 | | 16=-7x^2+14x | | 9x=5-4x | | m−44=-40 | | 98-f=-35 | | 0.8x+0.9x=5.1 | | y−73=-1 | | 10n^2+2=290 | | -5f=-60 | | 10=h/6 | | 89=p+-24 | | b-23=-30 | | 3x=1/2(x+5) | | d−382=330 | | p−529=219 | | -7q=-28 | | 3v=99 | | 6x-3x-1=20 | | 2(1.5m+3)+4.5m=21 | | -7=s/8 | | 3/4x+4-7x=4 | | 60x(x)=150 | | v−54=6 | | j−1=2 | | -7(4-g)-3(g-3)=-22 | | 3/4x+1=x | | 1-d=36 | | 36=d−1 |